
Problem

Why can't I import xyz IDL data definition from abc IDL namespace?

Solution

There are a few possibilities:

The Python CORBA stubs for your IDL interface are not in your environment variable$PYTHONPATH
Another set of Python CORBA stubs are superceding the stubs you are interested in using. There is a very high probability this is the case if
the IDL module (i.e., namespace) your IDL interface is defined in is reopened in other ALMA CVS modules you are using < ACS 4.1.4. and
See ALMASW2002083 in the ALMA SPR system for more details
You are importing an IDL module which provides definitions used by another IDL module you have already imported. For some reason or
another restricts users from doing this. Don't worry if this sounds confusing, it is. An example should help:omniORBPy

 import ACS
 import Control #the Control IDL module includes IDL files which utilize the "ACS" IDL module

is OK, while there's a strong possibility:

 import Control
 import ACS

will throw an exception after the import ACS statement.

you've defined in IDL where is a reserved keyword in Python. Look at the IDL->Python CORBA Mapping Specifications module xyz xyz
available from OMG's website to determine what Python module gets mapped to.xyz

How you import your IDL interfaces has a great impact on which interfaces are available in your IDL module (namespace). If you have not previously
imported the IDL module but you request one of its interfaces, the interface loading code will create the IDL (namespace) module for you and populate
it with the information from that interface. Subsequent interface loads will add to this dynamically created IDL (namespace) module. Depending single
on how many interfaces you load and their dependencies, you may end up with a IDL (namespace) module that contains a small subset of the
interfaces.

The fix for this problem is to reload the IDL (namespace) module. This action will force all of the interfaces in the module to be loaded from disk.

To illustrate the fix, here is an example. Suppose the code that is failing in your program looks like this:

 myModule = __import__("Module", globals(), locals(), ["MyClass"])
 myClass = myModule.__dict__.get("MyClass") # Returns None because "Module" isn't completely loaded
 myObject = myClass() # Fails because instance is None

You can force to be reloaded by doing the following:Module

 myModule = __import__("Module", globals(), locals(), ["MyClass"])
 myClass = myModule.__dict__.get("MyClass") # Returns None because "Module" isn't completely loaded
 if myClass is None:
 reload(myModule) # Reloads "Module" from the file system
 myClass = myModule.__dict__.get("MyClass") # Returns "MyClass" if it is defined in the "Module"
 myObject = myClass() # Works now

Related articles

How can more people do development with ACS on the same machine without disturbing each other?
Which ports are used by ACS?
Problems connecting to ACS servers on a remote machine: bad /etc/hosts
Why does the getComponent method of ZLegacy/ACS.ContainerServices return an object of type None?
Why are some of my print statements not showing up in the container output section of acscommandcenter?

https://confluence.alma.cl/pages/viewpage.action?pageId=54002502
https://confluence.alma.cl/pages/viewpage.action?pageId=54002759
https://confluence.alma.cl/pages/viewpage.action?pageId=54002506
https://confluence.alma.cl/pages/viewpage.action?pageId=54003254
https://confluence.alma.cl/pages/viewpage.action?pageId=54003317

	Why can't I import xyz IDL data definition from abc IDL namespace?

