
ACSACS
Logging System Logging System

Concepts and Concepts and
ExampleExample

J. Avarias & A. Caproni

(Restructured, based on slides from previous years)

ALMA Project

Why Logging?

● ACS itself, and the software built with ACS, produce logs.
● The purpose of logs is to publish any kind of status and

diagnostic information for interested clients and archival.
– Logs are essential for post-mortem analysis of hardware or

software problems.
– For normal logs, the intended audience are developers.
– Optional “audience” set for individual logs. It can be used for

filtering of logs, orthogonal to log levels.
• ENGINEER
• OPERATOR
• SCILOG

ALMA Project

ACS Log
Service

Conceptual Overview

your Java

ACS Java logger

D
E

B
U

G

IN
F

O

E
R

R
O

R

ACS C++ logger

your C++

E
R

R
O

R

IN
F

O

D
E

B
U

G
INFO
ERROR

DEBUG
INFO
ERROR

stdout:

{ ERROR }

{ E
R

R
O

R
, I

N
FO

, D
EB

U
G

 }

Log GUI
(“jlog”)

Log to
file

ALMA Project

Log Forwarding

● Logs can be output locally on the console.
● Logs can be sent to a central Log service,

coming from many components / clients in
different languages (C++, Java, Py).

● From the Log service, all logs can be viewed
together and analyzed live in a GUI, or written
to file, or to a database and be processed later.

ALMA Project

Logger Objects & Filters

● Containers, components and some larger tools use separate
ACS logger objects.

● Logs are prioritized with log levels, which allows filtering, to
process only sufficiently important logs.

● Filtering can be configured per process or per logger.
● Log level filters are applied at the source, before the log is sent

to the network.
● Log receiver tools have additional throw-away filtering

capabilities, which work the same for all logs.

ALMA Project

Log system technology (1)

● From the log producers to the Log service, and from
there to the receiving clients, logs are transmitted in
XML format.

● The ACS central Log service
– Receives batches of log records through its IDL interface.

– Is based on the CORBA (“Telecom”) Log service.

– Forwards to a CORBA Notification Channel (NC), to deliver
logs to registered clients.

– That NC runs in a separate process, to not interfere with the
applications’ notification channels.

ALMA Project

Log Repeat Guards

● ACS offers “repeat guard” classes that can be used to conveniently reduce the number of executions of some
identical activity such as logging.

– Repeat guards are configurable based on the number of skipped executions, or skipping time, or combinations.

– There are both log-specific and generic repeat guards.
● Real world example (from the jDAL, skipping logs for the same recordID). Here we use the advanced class

MultipleRepeatGuard and wrap the logging of our message with it. This is different from using a
RepeatGuardLogger, which does not construct its own log message.

MultipleRepeatGuard recordNotExistLogRepeatGuard = new …;
if (recordNotExistLogRepeatGuard.checkAndIncrement(recordID)) {
 String msg = “Record '" + recordID + "' does not exist.“;
 int repeatCount = recordNotExistLogRepeatGuard.
 counterAtLastExecution(recordID);
 if (repeatCount > 1) {
 msg += " (" + repeatCount + " identical logs reduced to this log)“;
 }
 m_logger.log(AcsLogLevel.NOTICE, msg);
}

ALMA Project

Log system technology (2)

● ACS logger objects appear like the
“native” APIs

– C++ ACE logging
– Java: java.util.logging
– JDK-inspired Python logging API

ALMA Project

Log system technology (3)
Plain JDK Logger with ACS behind the scenes

java.util.logging.Logger
• info(String msg)
• log(Level, String msg, Throwable)

ContainerServices#getLogger()

Application code
(component or comp-client)

creates & configures

getLogger

uses

VM-local ACS log handler

forwards messages

remote ACS
 Log Serviceforwards

(XML)

ALMA Project

Log system technology (4)
XML syntax of a log entry

● Log entry type (Debug, Info, Trace...)
● Timestamp (ISO format)
● Source code info (File, Line, Routine)
● Runtime context info (Host, Process, Thread,

StackLevel)
● Identification (LogId, Uri)
● Priority (1-11; default is 2)
● Data (<Name, Value>), incl. exceptions
● Message

ALMA Project

Example of a log message

<Debug
TimeStamp="2002-10-7T13:44:16.530"
Host=“te1.hq.eso.org“
Process="baciTestServer“
Thread="main"
Context="“
File="baciTestClassImpl.cpp“
Line="205"
Routine="BaciTestClass::~BaciTestClass

>
Great debug message!

</Debug>

ALMA Project

Log entry type
and numerical value

● Trace (1)
● Delouse (2)
● Debug (3)
● Info (4)
● Notice (5)
● Warning (6)
● Error (8)
● Critical (9)
● Alert (10)
● Emergency (11)
● Off (99)

ALMA Project

Logging Configuration
Overview

● Without anything else, an ACS logger is configured to log
TRACE and above levels.

● Optional environment variables can set per-process default log
levels.

● The CDB can set per-process log levels and per-logger levels
– For example, loggers for ACS container and for some stable

component log only WARNING and higher, but logger for some
unstable component should log DEBUG and higher.

– Per-logger levels in the CDB “beat” the env vars, while the env vars
override the CDB per-process default

● Tools to dynamically change log levels in the running system.

ALMA Project

Logging Configuration
Environment Vars

● $ACS_LOG_STDOUT sets default values , you can limit
which logs are printed to standard out.

– $ACS_LOG_STDOUT must be between 1 and 11. Lesser values
imply that more logs get printed / forwarded.

● Likewise, $ACS_LOG_CENTRAL sets the default log level
for central logging to the ACS Log service.

● $ACS_LOG_FILE (or default $ACS_TMP/<hostname>/
acs_local_log_<processname>, when not set) - location and
root file name for additional stdout-like ACS log files. Most
processes generate a unique file name by appending
process name and PID to the root file name.

ALMA Project

Logging Configuration
in the CDB

 <Container >
 <LoggingConfig
 minLogLevel=“6”
 minLogLevelLocal="8”
 immediateDispatchLevel=“5”
 dispatchPacketSize=“100”
 flushPeriodSeconds="10” >
 <log:_ Name="jacorb@silentContainer"
 minLogLevel="8" minLogLevelLocal="8" />
 </LoggingConfig>
</Container>

Details are described at
http://www.eso.org/projects/alma/develop/acs/OnlineDocs/ACS_docs/schemas/
urn_schemas-cosylab-com_LoggingConfig_1.0/complexType/LoggingConfig.ht
ml

Default log levels

Special levels for
a named logger
(here: the jacorb
logger)

ALMA Project

Logging Configuration
At Runtime (2)

 GUI “logLevelPanel”

ALMA Project

jlog

ALMA Project

ACS logging system 22UCN, Antofagasta
Nov 2010

C++ log messages

● Flags:
▸ LM_RUNTIME_CONTEXT
▸ LM_SOURCE_INFO

● Log types and default priorities:
▸ LM_TRACE (1)
▸ LM_DELOUSE(2)
▸ LM_DEBUG (3)
▸ LM_INFO (4)
▸ LM_NOTICE (5)
▸ LM_WARNING (6)
▸ LM_ERROR (8)
▸ LM_CRITICAL (9)
▸ LM_ALERT (10)
▸ LM_EMERGENCY (11)

ALMA Project

ACS logging system 23UCN, Antofagasta
Nov 2010

Java Log Messages

m_logger.info("sayHello called...");

catch (Exception ex)

{

 m_logger.severe(“ex in setLampBrightness impl”);

 m_logger.log(Level.SEVERE, "ex in setLampBrightness
impl", ex);

}

SEVERE

WARNING

INFO

FINE

FINER

FINEST

ALMA Project

References

● Logging and Archiving:
http://www.eso.org/projects/alma/devel
op/acs/OnlineDocs/Logging_and_Archivin
g.pdf

● Documentation for the APIs in the online
documentation.

	ACS Logging System Concepts and Example
	Why Logging?
	Conceptual Overview
	Log Forwarding
	Logger Objects & Filters
	Log system technology (1)
	Log Repeat Guards
	Log system technology (2)
	Log system technology (3) Plain JDK Logger with ACS behind the scenes
	Log system technology (4) XML syntax of a log entry
	Example of a log message
	Log entry type and numerical value
	Logging Configuration Overview
	Logging Configuration Environment Vars
	Logging Configuration in the CDB
	Logging Configuration At Runtime (2)
	Slide 21
	ACE log messages
	References

