
Distributed Systems
and

CORBA Standard
Rosita Hormann Lobos

Standalone computer

process

(a program
in execution)

In a fair computing scenario, when multiple processes are executed, they
“take turns” of computing time of the CPU. This is managed by a
kernel-level process called scheduler and is what allows multi-processing.

InterProcess Communication (IPC)

Mechanisms of communication in
standalone computer:

- Shared memory
- Mailboxes
- Pipes (ex: ls -l | grep txt)

IPC are mechanisms to allow the
processes to communicate among
them

Process 1
(client)

Process 2
(server)

communication

Process 1

Process 2

Process 3

Process n

…

Distributed System

Mechanism of
communication (IPC) in

distributed systems:
through the Network

depends on network IPC
protocol (dce/rpc, mcrpc,

gIOP (CORBA), grpc)

Computer A

Process 1

Process 2

Computer B

Process 3

Process 4

communication

A collection of autonomous computing elements that appears to its
users as a single coherent system

Distributed systems paradigms
• Message-exchange pattern
• Publish-Subscribe Message Model (ex: RabbitMQ, ActiveMQ,

Kafka)
• Request-reply
• Remote Procedure Call (RPC)

• Distributed Objects

Distributed Objects
• Distributed applications using OOP paradigm.

• Application Objects distributed over the network

• Objects provide methods. Through them other Objects in the
network access to services → Inter-Process Communication is
done via methods calling through the network

• Examples: Enterprise Java Beans, Microsoft DCOM, Java RMI,
ZeroC ICE, CORBA

CORBA: A Distributed Object-Based
System
CORBA = Common Object Request Broker Architecture

● Is a standard designed to facilitate the communication of systems
that are deployed on diverse platforms.

● Enables collaboration between systems on different operating
systems, programming languages, and computing hardware.

● Uses an object-oriented model.

 < ACS is built on top of CORBA >

CORBA characteristics
● Object-orientation

○ Remote Operations grouped into interfaces

○ An instance of an Interface is a CORBA object

○ The identity of a Corba object (object reference) is unique.
Encapsulates all information about the object like location
information

CORBA characteristics
● Location-transparency

○ It does not matter where the CORBA object is located (local or
remote). The operations are invoke using the same syntax.

● Programming Language Neutral

○ Designed to work with multiple programming Languages.

○ Interfaces definition is implemented in a common-language (IDL)

○ In ACS we use C++, Java and Python.

IDL and Language Mapping
IDL = Interface Definition Language

IDL is a declarative language, it defines an
interface with:

- Methods

- datatypes

It DOES NOT define an implementation, just
the interface.

module HelloApp {

 interface Hello {
 string sayHello();
 oneway void shutdown();
 }

}

IDL and Language Mapping
CORBA uses IDL to specify the interfaces that objects present to the outer
world. CORBA then specifies a mapping from IDL to a specific
implementation language like C++ or Java.

ComponentA.java
ComponentB.cpp

int aMethod(char*)

long x = ComponentB.aMethod(String);

return val; // (int)

mapping
Java String --> CORBA::string --> C++ char*

mapping
Java long <-- CORBA::long <-- C++ int

When an object calls remote method, CORBA handles the values passed
in the call and returns the method return value. The passing values are
serialized (CDR)and transported in a wire-protocol (GIOP).

ACS services on top of CORBA

• Distributed error

• Distributed logging

• Distributed Events (Notification Channel)

• Threading Support

