The ALMA QA2 Calibration Script Generator almaga2csg.py (CSG) for speeding up and standardising the generation of scripts used for manual calibration
of ALMA data. On this page you find the documentation of the public version of it (which may be a version or two behind the latest version in use at the
ALMA observatory).

The CSG has a number of optional input parameters. However, the only necessary input parameter is the name of the ASDM (raw ALMA data set) to be
calibrated. Based on the properties of the dataset, aimaga2csg creates a "scriptForCalibration.py" tailored to the needs of the particular case. The result
is a nearly complete script draft which may work as is but should be inspected by the analyst to make sure all steps are correct. So, the simplest possible
call to the CSG looks like this

i mport al maga2csg as csg
csg. gener at eReducScri pt (' ui d___A002_X7c0875_Xd65"')

This will import the given ASDM into an MS (named uid___A002_X7c0875_Xd65.ms in this case) and produce a calibration script draft file named
"uid____A002_X7c0875_Xd65_scriptForCalibration.py" for it.

NOTE: The CSG expects the ASDM to be named by only the Execution Block (EB) UID, e.g., ui d___A002_X7c0875_Xd65 as above. Any
extensions like ".asdm.sdm" need to be removed. Soft links are accepted.

The calibration scripts produced by the CSG use the now common "stepping mechanism" (which was added by D. Petry in 2012):
the idea is that the user of the script controls the execution of the different procedural steps of the calibration without having to edit the script,
thus avoiding the risk of introducing bugs in the script. The mechanism works as follows:

In the script header, the user can inspect a Python dictionary which contains the different steps of the script.
Example:
step_title = {0: "Inport of the ASDM,
1: 'Fix of SYSCAL table tines',
2. 'listobs',
3: "Apriori flagging',
4: 'Ceneration and tinme averaging of the WR cal table',
5: 'Ceneration of the Tsys cal table',
6: 'Generation of the antenna position cal table',
7: 'Application of the WR, Tsys and antpos cal tables',
8: 'Split out science SPW and tine average',
9: 'Listobs, and save original flags',
10: 'Initial flagging',
11: 'Putting a nodel for the flux calibrator(s)',
12: 'Save flags before bandpass cal"',
13: 'Bandpass calibration',
14: ' Save flags before gain cal"',
15: 'Gin calibration',
16: 'Save flags before applycal',
17: 'Application of the bandpass and gain cal tables',
18: 'Run renornmlization',
19: "Split out corrected colum',
20: 'Save flags after applycal'}

For a correct calibration, all these steps have to be executed in the given order.
But the user can execute one or a few steps at a time in order to inspect intermediate results or rerun certain steps after modification.
At the CASA prompt, the user sets the variable "mysteps" (note the "s" at the end!), e.g.

nysteps = [2,3,4,5, 6]
Then the calibration script is run using
execfile('uid___A002_X7c0875_Xd65_scriptForCalibration.py")

and this will execute only the steps 2, 3, 4, 5, and 6 of the script and then stop. The user can then look at the various plots produced by the script or
use the task plotms to inspect calibration tables.
Later, the user can either make modifications to the script and repeat steps or just continue setting, e.g.

nmysteps = [4,5, 6]
and calling execfile again.

NOTE: The order in which you enumerate the steps in the mysteps variable does not matter. The steps will always be executed in the order given in
the script.
If you don't set mysteps, running the script will execute all steps from 0 to the last.

NOTE 2: Important: some steps will not only produce plots and caltables but also apply flagging! If you need to modify these steps and re-run
them, you need to revert the flagging first!

For this purpose, the calibration script includes calls to the flagmanager task to save the state of flags before they are modified.

You can revert to the previous flagging state by running the flagmanager task in mode "restore" and providing the corresponding
versionname which you can find in the calibration script.

NOTE 3: the renormalization step is only present if there are FDM SPWs in the EB. You are expected to run this step first as-is in order to check
whether renormalization is needed. If so, you need to edit the script and set applyRenorm to True and then run the step again to apply the
renormalization.

The CSG is somewhat computing intensive. The execution time depends on the size of the input dataset and can take several 10 minutes, especially when
the MS has not yet been imported and importasdm has to be run.

Pay close attention to error messages on the terminal.
The CSG internally uses the analysisUtils and up to version 1.27, the CSG can work with CASA 5.1.1 or later. CASA 6 is recommended.
For QA2, use the same CASA version which is also presently used by the Pipeline.

Starting with version 1.28, the CSG requires a CASA version >= 6.2.1 with ALMA pipeline in order to have access to the renormalisation module.

If you want to use the CSG with a CASA version which does not contain the ALMA pipeline (i.e. the renorm module), or if you just don't want the
renorm step to be generated even though FDM science SPWs are present, you need to set the parameter includeRenorm=False .

For Cycle 9, use version 1.30 or later with CASA 6.4.1 with ALMA pipeline.

Access

The CSG is contained in a single Python module almaga2csg which is part of the "analysis_scripts.tar" package. This package also contains the
"analysisUtils" which you will also need since the CSG uses a few of their functions.

See the Zenodo analysisUtils page (presently for version 2.49, 12 July 2023) (which provides a citeable DOI: 10.5281/zenodo.8140844) and the Analysis
Utilities CASA Guide for details on how to install the package.

Be sure to check the Zeondo page for the presence of a later version. There are several releases per year.

Usage

With your sys.path set up to import the analysisUtils, type

i mport al neqa2csg as csg
hel p csg. gener at eReducScri pt

to obtain the following help (status version 2.3, 2023/02/01):

Hel p on function generateReducScript in nodul e al maga2csg:

gener at eReducScri pt (nsNanes='"', step='calib', corrAntPos=True, tinmeBinForFinal Data=0.0, refant="",

bpassCal 1d=""', chanWd=1, angScal e=0, run=Fal se, | owSNR=Fal se, projectCode="", schedbl ockName="",

schedbl ockUi d=""', queue='', state='', upToTi neForState=2, uselLocal Al naHel per=True, tsysChanTol =1, sdQSCOf| ux=1,
runPhased osur e=Fal se, ski pSyscal Checks=Fal se, |azy=Fal se, |bc=Fal se, rentloud=Fal se, bdfflags=True,

t sysPer Fi el d=Fal se, splitM/Sci enceSpw=True, bpassCal Tabl eNane=""', rei ndexMySci enceSpw=Fal se,

useCal i brat or Servi ce=True, calibratorServiceURL=None, allowHybrid=Fal se, conbi neB2BLFspws=Fal se,
i ncl udeRenor n=Tr ue)

The ALMA QA2 calibration script generator

nsNanes: a string or a list of strings of UDs (either ASDM or MS) to process
NOTE: rigorous regression testing is presently only done on single UDs, not lists
defaul t=""

step: calib, fluxcal, wr, calsurvey, SDeff, SDcalibLine, SDcalibCont, SDscience, SDanpcal
default="calib'

corrAntPos: if True, then run correct M/Ant ennaPositi ons
def aul t =True

ti nmeBi nFor Fi nal Data: a value in seconds (string, int, or float), passed to split

def aul t =0.

refant: the reference antenna to use (instead of automatic selection), nust be a string
default=""', i.e. determ ne automatically

bpassCal | d: use the specified source for bandpass (rather than determ ne fromthe intents)
default=""', i.e. determine fromthe intents

chanWd: integer, used by runC eanOnSource and sear chForLi nes
defaul t=1

angScal e: deprecated

run: deprecat ed

| owSNR: Bool ean passed to doBandpassCalibration to use whol e spw for pre-bandpass phase-up
def aul t =Fal se

proj ect Code, schedbl ockName, queue, state, upToTi meFor State: deprecated

useLocal Al mraHel per: if True, run tsysspwrap inside generator, rather than in the resulting script
def aul t =True

https://zenodo.org/record/8140844
https://casaguides.nrao.edu/index.php?title=Analysis_Utilities
https://casaguides.nrao.edu/index.php?title=Analysis_Utilities

tsysChanTol : integer argunment passed to tsysspwiap
defaul t=1

sd@SOflux: flux density to use for quasar in single dish case (step="SDeff")
defaul t=1

runPhased osure: deprecated

ski pSyscal Checks: if True, then don't check for negative Tsys probl ens
def aul t =Fal se
lazy: value of the 'lazy' paraneter in inportasdm |f True, reference the ASDM i nstead
of copying the visibilities into the DATA colum of the Ms. Saves disk space.
def aul t =Fal se
| bc: if True, in bandpass calibration, use solint="inf,8Miz' instead of 'inf,20ch’
def aul t =Fal se
rencloud: if True, run the recipe rempve_cloud prior to running wrgcal
def aul t =Fal se
bdf fl ags: passed to inportasdmto invoke the application of BDF flags
def aul t =True
bpassCal Tabl eNane: to use instead of default nane
default="", i.e. use the bp table created for bpassCalld with the standard nani ng
phaseDi ff: deprecated (BWBW and B2B nbdes are recogni zed automatical |l y)

tsysPerField: passed to the perField paraneter of tsysspwrap
def aul t =Fal se
splitM/ScienceSpw. In the final split-out, only include the SPW corresponding to intent OBSERVE TARGET
and BANDPASS.
def aul t =True
rei ndexMySci enceSpw. performreindexing in the split out after the apriori calibration.
def aul t =Fal se
useCal i bratorService: if True, then, in the call to aU. get ALMAFI uxForMs in the setjy step, use
aU. cal i bratorService(), otherw se use aU. get ALMAFI ux()
def aul t =True
cal i bratorServiceURL: the URL to pass to aU. calibratorService() if useCalibratorServi ce==True
default: None - use the default of calibratorServiceURL in aU. get ALMAFI uxFor M5()
al lowHybrid: if False, only the antennas of the domi nant (nmpst often occuring) antenna dianeter are split
out .
If True, all antennas are split out.
def aul t =Fal se
conbi neB2BLFspws: if True, and if the dataset uses band-to-band phase transfer, then conbine the LF SPW
in gaincal and use appropriate spwraps.
def aul t =Fal se
includeRenorm if True, a step is added in the calibration script to performrenormalization
def aul t =True

Feedback, bug reports, feature requests

Feedback, bug reports, feature requests should be made by email to dpetry@eso.org .

mailto:dpetry@eso.org

	The ALMA Calibration Script Generator (public version)

