
1.

2.

3.

4.

Problem

Sometimes it takes longer than five seconds to receive an event after it was published. What's going on?

Solution

If the developer-implemented receive method of a Consumer class takes a large amount of time to complete, this bottlenecks events being sent to that
particular consumer. That is, there is a mutex lock somewhere in the TAO notification service making sure the first call to push_structured_event comp
letes before this consumer method is invoked a second time.

The effect this has on other consumer instances is undesireable as well but not horrible most of the time mainly because TAO uses a pool of threads to
handle consumer objects instead of a single thread for all consumers. Events being received by other consumers get delayed even if their methoreceive
d is "lightweight".

To get around this the HLA group has stated that non-ACS subsystems should queue the incoming events from their method and have a receive
separate thread created within their code to process the events later. You should use your best judgement when deciding if your implementationreceive
is "heavy" or not. In general, implementations involving CORBA calls on other objects need to have the event queued. The generic steps needed to
process these events later are:

Within whatever class you're using (normally a Component implementation but it very well could be something else) define a queue member
variable. If the queue class you're using is not thread safe, also define a mutual exclusion lock
Define a thread. This thread will loop forever basically just executing the code you now have within your method or event handler receive
function. The subtle difference is at each iteration of the forever loop it should take an event from the queue and process it
Modify your or event handler function. The code that used to process the event should be placed in the body of the forever loop in the receive
thread from the previous step. receive/handler should now just toss the event on your member queue.
Create the thread from the class in before invoking Consumer's functionstep 1 consumerReady

ACS may help with the decision whether any particular method should be implemented asynchronously, see receive NCClassesShouldMonitorReceiv
.eMethodExecutionTime

Related articles

How can more people do development with ACS on the same machine without disturbing each other?
Which ports are used by ACS?
Problems connecting to ACS servers on a remote machine: bad /etc/hosts
Why does the getComponent method of ZLegacy/ACS.ContainerServices return an object of type None?
Why are some of my print statements not showing up in the container output section of acscommandcenter?

https://ictwiki.alma.cl/twiki/bin/view/ZLegacy/ACS/NCClassesShouldMonitorReceiveMethodExecutionTime
https://ictwiki.alma.cl/twiki/bin/view/ZLegacy/ACS/NCClassesShouldMonitorReceiveMethodExecutionTime
https://confluence.alma.cl/pages/viewpage.action?pageId=54002502
https://confluence.alma.cl/pages/viewpage.action?pageId=54002759
https://confluence.alma.cl/pages/viewpage.action?pageId=54002506
https://confluence.alma.cl/pages/viewpage.action?pageId=54003254
https://confluence.alma.cl/pages/viewpage.action?pageId=54003317

	Sometimes it takes longer than five seconds to receive an event after it was published. What's going on?

