Problem

Using the del keyword on a Python object does not seem to really invoke the destructor

Solution

Q: After doing a del obj from a Python script where obj can be any Python object the destructor, __del__, of obj is never invoked.

Calling del on a Python object does not guarantee the destructor will be called! That simply decrements a counter internal to the object. It will invoke the
destructor if (and only if) the internal counter, after it is decremented, has reached zero.

Q: Why doesn't the Python interpreter call the __del__ method of all Python objects contained within it before exiting?

There is not even a guarantee that the Python interpreter will invoke the destructors of all objects residing in it before exiting! This is part of the Python
specification.

Workaround:

The only guaranteed way to ensure a destructor is called in Python is to call it in your own code like this:
obj.__del_ ()

Related articles

How can more people do development with ACS on the same machine without disturbing each other?
Which ports are used by ACS?

Problems connecting to ACS servers on a remote machine: bad /etc/hosts

Why does the getComponent method of ZLegacy/ACS.ContainerServices return an object of type None?
Why are some of my print statements not showing up in the container output section of acscommandcenter?


https://confluence.alma.cl/pages/viewpage.action?pageId=54002502
https://confluence.alma.cl/pages/viewpage.action?pageId=54002759
https://confluence.alma.cl/pages/viewpage.action?pageId=54002506
https://confluence.alma.cl/pages/viewpage.action?pageId=54003254
https://confluence.alma.cl/pages/viewpage.action?pageId=54003317

	Using the del keyword on a Python object does not seem to really invoke the destructor

