
Problem

How and why does the Python getComponent ZLegacy/ACS.ContainerServices method automatically narrow components?

Solution

ACS has chosen to use as the Python ORB ALMA uses. This decision actually has a lot of positive implications and one of them is that omniORBPy
under circumstances generic references do not need to be narrowed to be used. To find out when must be most CORBA.Object CORBA.Objects
narrowed, take a look at . To be completely safe though, it is highly http://omniorb.sourceforge.net/omnipy2/omniORBpy/omniORBpy003.html#toc10
recommended that references be narrowed to their correct type.CORBA.Object

All of this sounds fine, but what does this have to do with calls to the method from codemy getComponent ZLegacy/ACS.ContainerServices my
? Well in a never-ending effort to hide CORBA from ALMA developers, the Python method tries to automatically import the CORBA getComponent
stubs for the component (this would be required from your code if did not take care of it!) narrow it to the correct type. Immediately getComponent and
a few questions arise from this:

How does determine which IDL interface the component should be narrowed to?getComponent

If it's a dynamic component, the IDL type (typically something like " ") IDL:/alma/someModule/SomeInterface:1.0 must be provided by you using the comp
_idl_type keyword parameter. If it's a "normal" component, getComponent queries manager for the component's IDL type and manager pulls this
information up from $ACS_CDB/CDB/MACI/Components/. WARNING: if the CDB entry specifies the wrong IDL type, will not be getComponent
able to narrow the component!

How does determine which CORBA stub to import?getComponent

Once getComponent has determined the component's IDL type (see previous question), it quite simply assumes that the IDL type follows the standard
convention of placing IDL interfaces within a single IDL module. Keeping this and the IDL->Python mapping in mind, it assumes that the second to last
alphabetic name in the IDL type is the name of the module and the last alphabetic name in the IDL type is the name of the IDL interface.

What can go wrong?

Unfortunatley lots:

quite often it's the case that developers incorrectly assume there is something wrong with when it cannot retrieve a reference getComponent
to a component for some reason. More often than not, this is caused because the component name provided is incorrect, the container
responsible for the component you're trying to access has not been started or has died trying to activate the component, etc. The situation is
made even worse because the Manager IDL interface does not throw remote exceptions describing why it could not give a getComponent
valid reference. Instead, it simply returns a CORBA reference which obviously cannot be narrowed to the correct type.Nil
if the IDL type in the ACS CDB is defined incorrectly or the wrong IDL type is specified as a keyword parameter to , it should getComponent
be immediately apparent that the reference cannot be narrowed
the IDL type is specified correctly, but the CORBA stubs cannot be imported (see). One such case is when you've given an IDL ACS FAQ
module a name identical to a Python keyword (e.g.,). To alleviate this specific problem one must either:exec

depend on omniORB's ability to automatically narrow CORBA references. To do this import the Python CORBA stubs for before exec
calling . Regardless you will still see an error log because of inability to narrow the interface.getComponent getComponents
narrow the returned by to it's correct type yourself. See OMG's IDL->Python mapping document to CORBA.Object getComponent
understand how this is done. Once again, you'll still see the error coming from .getComponent

Related articles

How can more people do development with ACS on the same machine without disturbing each other?
Which ports are used by ACS?
Problems connecting to ACS servers on a remote machine: bad /etc/hosts
Why does the getComponent method of ZLegacy/ACS.ContainerServices return an object of type None?
Why are some of my print statements not showing up in the container output section of acscommandcenter?

http://omniorb.sourceforge.net/omnipy2/omniORBpy/omniORBpy003.html#toc10
http://IDL/alma/someModule/SomeInterface:1.0
https://ictwiki.alma.cl/twiki/bin/view/Main/FAQPythonMissingCORBAStubs
https://confluence.alma.cl/pages/viewpage.action?pageId=54002502
https://confluence.alma.cl/pages/viewpage.action?pageId=54002759
https://confluence.alma.cl/pages/viewpage.action?pageId=54002506
https://confluence.alma.cl/pages/viewpage.action?pageId=54003254
https://confluence.alma.cl/pages/viewpage.action?pageId=54003317

	How and why does the Python ACS.ContainerServices getComponent method automatically narrow components?

