
The directory ICD has to be generated using the following command:

Console

getTemplateForDirectory MODROOT_WS ICD

Makefile

The Makefile was generated with the previous command, but the following entries need to be modified / added:

Makefile

#
Generate ACS Error System classes
#
ACSERRDEF := SystemErr

IDL Files and flags

IDL_FILES = Types Console DataBase Instrument Scheduler Telescope TelescopeControl Camera Storage
IDL_TAO_FLAGS =
USER_IDL =

TypesStubs_LIBS = acscomponentStubs
ConsoleStubs_LIBS = acscomponentStubs SYSTEMErrStubs TypesStubs
DataBaseStubs_LIBS = acscomponentStubs SYSTEMErrStubs TypesStubs
InstrumentStubs_LIBS = acscomponentStubs SYSTEMErrStubs TypesStubs
SchedulerStubs_LIBS = acscomponentStubs SYSTEMErrStubs
TelescopeStubs_LIBS = acscomponentStubs SYSTEMErrStubs TypesStubs
TelescopeControlStubs_LIBS = baciStubs acscomponentStubs SYSTEMErrStubs TypesStubs
CameraStubs_LIBS = baciStubs acscomponentStubs SYSTEMErrStubs TypesStubs
StorageStubs_LIBS = acscomponent TypesStubs

IDL Files

The IDL files have to be placed in the ICD/idl directory:

Types.idl

#ifndef _TYPES_IDL_
#define _TYPES_IDL_

/***
* ACS Community - https://github.com/ACS-Community/ACS-Workshop
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/

#pragma prefix "acsws"

/** @file Types.idl
 * IDL specification of Mount object for ACS Course
 *
 * There are 4 different interfaces that show the implementation
 * of a Mount component with increasing complexity.
 * At every step we add new functionality, aligned with what
 * is demonstrated in the course
 */

module TYPES
{
 // Image types
 typedef sequence<octet> ImageType;
 typedef sequence<ImageType> ImageList;

 // Coordinates type
 struct Position {
 double az;
 double el;
 };

 // Targets types
 struct Target {
 long tid;
 Position coordinates;
 long expTime; /* seconds */
 };
 typedef sequence<Target> TargetList;

 // Proposal types
 struct Proposal {
 long pid; /* proposal ID */
 TargetList targets;
 long status; /* 0 queued, 1 running, 2 ready */
 };
 typedef sequence<Proposal> ProposalList;

 // RGB Configuration of the CCD
 struct RGB {
 long red;
 long green;
 long blue;
 };

};

#endif

Console.idl

#ifndef _CONSOLE_IDL_
#define _CONSOLE_IDL_

/***
* ACS Community - https://github.com/ACS-Community/ACS-Workshop
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

*/

#include <acscomponent.idl>
#include <Types.idl>
#include "SystemErr.idl"

#pragma prefix "acsws"

/**
 * @file Console.idl
 * SystemErr Console IDL file
 */

module CONSOLE_MODULE
{

 /** @interface Console
 * Operator's interface to set automatic and manual modes.
 * Grants manual access to low level components.
 */
 interface Console : ACS::ACSComponent
 {
 /**
 * Set the automatic / manual mode for the operator. Raises an exception
 * if the automatic mode is asked twice.
 *
 * @param mode if true then automatic mode otherwise manual mode.
 * @return void
 */
 void setMode(in boolean mode)
 raises(SystemErr::AlreadyInAutomaticEx);

 /**
 * Get the current operator's mode.
 *
 * @return current operator's mode
 */
 boolean getMode();

 /**
 * Set the camera on.
 *
 * @return void
 */
 void cameraOn()
 raises (SystemErr::SystemInAutoModeEx);

 /**
 * Set the camera off.
 *
 * @return void
 */
 void cameraOff()
 raises (SystemErr::SystemInAutoModeEx);

 /**
 * Move telescope in synchronous mode. Raises an exception if the
 * requested position is out of limits.
 *
 * @coordinates az, el coordinates
 * @return void
 */
 void moveTelescope(in TYPES::Position coordinates)
 raises(SystemErr::PositionOutOfLimitsEx, SystemErr::SystemInAutoModeEx);

 /**
 * Current telescope position.
 *
 * @return Telescope position
 */

 TYPES::Position getTelescopePosition();

 /**
 * Get an image from the camera (from actual position of telescope).
 *
 * @return Image from the camera
 */
 TYPES::ImageType getCameraImage()
 raises(SystemErr::SystemInAutoModeEx, SystemErr::CameraIsOffEx);

 /* Camera settings */

 /**
 * Set the RGB configuration of the camera
 * @param rgbConfig the TYPES::RGB configuration
 */
 void setRGB(in TYPES::RGB rgbConfig)
 raises(SystemErr::CameraIsOffEx);

 /**
 * Set the pixel bias configuration of the camera
 * @param bias the pixel bias configuration
 */
 void setPixelBias(in long bias)
 raises(SystemErr::CameraIsOffEx);

 /**
 * Set the reset level configuration of the camera
 * @param resetLevel the reset level configuration
 */
 void setResetLevel(in long resetLevel)
 raises(SystemErr::CameraIsOffEx);
 };
};

#endif

DataBase.idl

#ifndef _DATABASE_IDL_
#define _DATABASE_IDL_

/***
* ACS Community - https://github.com/ACS-Community/ACS-Workshop
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/

#include <acscomponent.idl>
#include <Types.idl>
#include "SystemErr.idl"

#pragma prefix "acsws"

/**
 * @file Database.idl

 * SystemErr Database IDL File
 */

module DATABASE_MODULE
{
 /** @interface Database
 * Interface to get access to the UOS database
 */
 interface DataBase : ACS::ACSComponent
 {
 /**
 * Stores a new Proposal.
 *
 * @param targets Target list composing this proposal.
 * @return Assigned proposal ID (pid).
 */
 long storeProposal (in TYPES::TargetList targets);

 const long STATUS_INITIAL_PROPOSAL = 0;
 const long STATUS_NO_SUCH_PROPOSAL = -999; // it is not recomended to use this constant. this
constant may be removed in future.

 /**
 * Get the current proposal status for the given
 * proposal.
 *
 * @param pid Proposal ID
 * @return status
 */
 long getProposalStatus(in long pid);

 /**
 * Remove proposal.
 *
 * @param pid Proposal ID
 */
 void removeProposal(in long pid);

 /**
 * Retuns all images for a given proposal.
 * Raises an exception if proposal has not been
 * executed yet.
 *
 * @param pid Proposal ID
 * @return Image list that belongs to this proposal
 */
 TYPES::ImageList getProposalObservations(in long pid)
 raises(SystemErr::ProposalNotYetReadyEx);

 /**
 * Returns stored proposals which have not been executed yet.
 *
 * @return Proposals with queued status. If there are no
 * pending proposals returns an empty list
 */
 TYPES::ProposalList getProposals();

 /**
 * Set the proposal status. Raises an exception if the change is not from
 * queued(0) to running(1) or from running(1) to ready(2).
 *
 * @param pid Proposal ID
 * @param tid target ID
 * @return None
 */
 void setProposalStatus(in long pid, in long status)
 raises(SystemErr::InvalidProposalStatusTransitionEx);

 /**
 * Stores an image for a given proposal and target. Raises an exception

 * if an image has already been stored for the given
 * tid and pid.
 *
 * @param pid Proposal ID
 * @param tid target ID
 * @return None
 */
 void storeImage(in long pid,
 in long tid,
 in TYPES::ImageType image)
 raises(SystemErr::ImageAlreadyStoredEx); // TODO raise also new exception
"ProposalDoesNotExist"
 /**
 * Clean all the proposals
 */
 void clean();
 };
};

#endif

Camera.idl

#ifndef _CAMERA_IDL_
#define _CAMERA_IDL_

/***
* ACS Community - https://github.com/ACS-Community/ACS-Workshop
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/

#include <baci.idl>
#include <Types.idl>

#pragma prefix "acsws"

module CAMERA_MODULE
{
 interface Camera : ACS::ACSComponent
 {

 TYPES::ImageType takeImage(in string exposureTime, in string iso);

 };
};

#endif

Instrument.idl

#ifndef _INSTRUMENT_IDL_
#define _INSTRUMENT_IDL_

/***
* ACS Community - https://github.com/ACS-Community/ACS-Workshop
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/

#include <acscomponent.idl>
#include <Types.idl>
#include "SystemErr.idl"

#pragma prefix "acsws"

/**
 * @file Instrument.idl
 * SystemErr Instrument IDL file
 */

module INSTRUMENT_MODULE
{
 /**/
 /** @interface Instrument
 * This is the Webcam interface for the 50mm telescope.
 */
 interface Instrument : ACS::ACSComponent
 {
 /**
 * Turns the Instrument camera on.
 *
 * @return None
 */
 void cameraOn ();

 /**
 * Turns the Instrument off.
 * A NULL string as the target identifier indicates that no image file
 * should be saved.
 *
 * @todo Function should be refactored so that only one operation is performed.
 *
 * @return None
 */
 void cameraOff ();

 /**
 * Retrieve image from the Instrument. Raises an exception if the
 * camera is not on.
 *
 * @return array of longs containing the image pixels
 */
 TYPES::ImageType takeImage(in long exposureTime)
 raises(SystemErr::CameraIsOffEx);

 /* Camera settings */

 /**
 * Set the RGB configuration of the camera
 * @param rgbConfig the TYPES::RGB configuration
 */

 void setRGB(in TYPES::RGB rgbConfig)
 raises(SystemErr::CameraIsOffEx);

 /**
 * Set the pixel bias configuration of the camera
 * @param bias the pixel bias configuration
 */
 void setPixelBias(in long bias)
 raises(SystemErr::CameraIsOffEx);

 /**
 * Set the reset level configuration of the camera
 * @param resetLevel the reset level configuration
 */
 void setResetLevel(in long resetLevel)
 raises(SystemErr::CameraIsOffEx);
 };
};

#endif

Storage.idl

#ifndef _STORAGE_IDL_
#define _STORAGE_IDL_

/***
* ACS Community - https://github.com/ACS-Community/ACS-Workshop
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/

#include <acscomponent.idl>
#include <Types.idl>

#pragma prefix "acsws"

module STORAGE_MODULE
{
 /**
 * Special storage created for the observatory
 * The storage has been designed to be written only
 * once and read many times per observation
 */
 interface Storage : ACS::ACSComponent
 {

 /**
 * @return the next valid ID to store a proposal
 */
 long getNextValidId();

 /**
 * Store in the Storage the completed observation
 * The number of Targets within proposal must match
 * the number of images
 */
 void storeObservation(in TYPES::Proposal prop, in TYPES::ImageList images);

 /**
 * Wipe out the storage
 */
 void clearAllData();

 /**
 * Retrieve a completed proposal from Storage
 */
 TYPES::ImageList getObservation(in long pid);
 };
};

#endif

Scheduler.idl

#ifndef _SCHEDULER_IDL_
#define _SCHEDULER_IDL_

/***
* ACS Community - https://github.com/ACS-Community/ACS-Workshop
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/

#include <acscomponent.idl>
#include "SystemErr.idl"

#pragma prefix "acsws"

/**
 * @file Scheduler.idl
 * SystemErr Scheduler IDL file
 */

module SCHEDULER_MODULE
{
 /** @interface Scheduler
 * This is a simple scheduler for the SystemErr
 */
 interface Scheduler : ACS::ACSComponent
 {
 /**
 * Start the scheduler.
 * The scheduler will loop through all available proposals,
 * either until all proposals are done or until the stop method is called.
 * Raises an exception if called twice.
 * @return None
 */
 void start ()
 raises(SystemErr::SchedulerAlreadyRunningEx);

 /**
 * Stops the scheduler.
 * This will stop the scheduler from scheduling more proposals.
 *
 * It will not(!) break the ongoing observation, and will return only
 * when the running observation has finished.
 *
 * Raises an exception if called twice.
 * @return None
 */
 void stop ()
 raises(SystemErr::SchedulerAlreadyStoppedEx);

 /**
 * Returns the pid of the proposal currently under execution
 *
 * Raises exception if no proposal is executing.
 * @retun Proposal ID
 */
 long proposalUnderExecution()
 raises(SystemErr::NoProposalExecutingEx);
 };

};

#endif

Telescope.idl

#ifndef _TELESCOPE_IDL_
#define _TELESCOPE_IDL_

/***
* ACS Community - https://github.com/ACS-Community/ACS-Workshop
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/

#include <acscomponent.idl>
#include <Types.idl>
#include "SystemErr.idl"

#pragma prefix "acsws"

/**
 * @file Telescope.idl
 * SystemErr Telescope IDL file
 */
module TELESCOPE_MODULE
{
 /** @interface Telescope
 * High level interface to communicate with the hardware
 * related component.
 */

 interface Telescope : ACS::ACSComponent
 {
 /**
 * Moves to the given position and takes an exposure
 * of length exposureTime (seconds). Raises and exception
 * if the requested position is out of limits.
 *
 * @param coordinates target coordinates
 * @param exposureTime exposure time of the current observation
 * @return Image
 *
 */
 TYPES::ImageType observe(in TYPES::Position coordinates, in long exposureTime)
 raises(SystemErr::PositionOutOfLimitsEx);

 /**
 * Commands the telescope to move to the given position. Raises
 * an exception if the requested position is out of limits.
 *
 * @param coordinates Requested telescope position
 * @return None
 */
 void moveTo(in TYPES::Position coordinates)

 raises(SystemErr::PositionOutOfLimitsEx);

 /**
 * Get the current telescope position.
 *
 * @return current telescope position
 */
 TYPES::Position getCurrentPosition();
 };
};

#endif

TelescopeControl.idl

#ifndef _H3E_IDL_
#define _H3E_IDL_

#include <baci.idl>

#pragma prefix "acsws"

module TELESCOPE_MODULE {

 /** @interface TelescopeControl
 * Defines the interface for controlling and monitoring a simple
 * telescope. This model considers a "quantum" of movement defined by
 * the calibration process for the discrete rotation sensors. The telescope
 * can't be operated until the calibration is done. A "calibrated" status bit
 * is kept, thus the commanded position is not going to be followed if this bit
 * is not set. This IDL was thinked for H3E project and for a lego model, but is used for
 * a more general purpose.
 * Please refer to
 * CSRG H3E project Twiki site for more information.
 */
 interface TelescopeControl : ACS::CharacteristicComponent {

 /**
 * Asynchronously sets the telescope to the specified position.
 * If the "calibrated" status bit is set, this method returns when the telescope
 * is at the commanded position, accepting an error defined by the calibration of
 * the rotation sensors for each axis. If not, the telescope is not going to move
 * and this method returns immediately.
 *
 * @param altitude desired telescope's altitude (degrees)
 * @param azimut desired telescope's azimut (degrees)
 */
 void setTo (in double altitude, in double azimuth);

 /**
 * Asynchronously moves away the telescope, starting from actual position.
 * If the "calibrated" status bit is set, this method returns when the telescope is
 * positioned at the actual position plus the indicated values for each axis. If not,
 * the telescope does not move and this method returns immediately.
 * The indicated altitude and azimut offsets must be bigger than the minimal altitude
 * and azimut steps, defined by the calibration process, or the telescope is not going
 * to move.
 *
 * @param altOffset desired altitude offset (degrees)
 * @param azOffset desired azimut offset (degrees)
 */
 void offSet (in double altOffset, in double azOffset);

 /**
 * Moves the telescope to zenith position. It is the same that a "setTo(90,0)" call.
 */
 void zenith ();

 /**
 * Moves the telescope to parking position (implemmentation-dependant).
 */
 void park ();

 /**
 * Unsets the "calibrated" status bit. It is necessary to manually move the
 * telescope (e.g. when it needs to be calibrated).
 */
 void setUncalibrated ();

 /**
 * Starts the calibration procedure for the conversion from motor rotation
 * to arc degrees. This procedure requires the telescope to be at zenith
 * position due to lack of touch sensors on the Lego MindStorms kit. Don't
 * forget to unset the "calibration" status bit when manually moving the telescope
 * or it is going to try to return to the last commanded position.
 */
 void calibrateEncoders ();

 /** Indicates the last commanded telescope's altitude.
 */
 readonly attribute ACS::RWdouble commandedAltitude; // devio, LegoCmdAltDevIO, CORBA::Double

 /** Indicates the last commanded telescope's azimut.
 */
 readonly attribute ACS::RWdouble commandedAzimuth; // devio, LegoCmdAzDevIO, CORBA::Double

 /** Indicates the actual telescope's altitude.
 */
 readonly attribute ACS::ROdouble actualAltitude; // devio, LegoAltDevIO, CORBA::Double

 /** Indicates the actual telescope's azimut.
 */
 readonly attribute ACS::ROdouble actualAzimuth; // devio, LegoAzDevIO, CORBA::Double

 /** Indicates some telescope's status parameters
 */
 readonly attribute ACS::RWpattern status; // devio, LegoStatusDevIO, ACS::pattern
 };

};

#endif

Error Definitions

The XML Error Definition file has to be placed in the ICD/idl directory:

SystemErr.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<Type xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="Alma/ACSError" xsi:schemaLocation="Alma
/ACSError ACSError.xsd" name="SystemErr" type="900907" _prefix="acsws">
 <ErrorCode name="AlreadyInAutomatic"
 shortDescription="Already in automatic mode"
 description="Trying to set automatic mode, failed. It has already been set"/>
 <ErrorCode name="PositionOutOfLimits"
 shortDescription="Position out of limits"
 description="Command tries to move the telescope out of limits"/>
 <ErrorCode name="ProposalNotYetReady"
 shortDescription="Proposal is not ready"
 description="Proposal is not ready"/>
 <ErrorCode name="InvalidProposalStatusTransition"
 shortDescription="Database: Invalid proposal status"
 description="Trying to set an invalid status for the proposa."/>
 <ErrorCode name="ImageAlreadyStored"
 shortDescription="Image already stored"
 description="Image has already been stored in the database."/>
 <ErrorCode name="CameraIsOff"
 shortDescription="camera is off"
 description="Trying to take exposure with camera off."/>
 <ErrorCode name="SchedulerAlreadyRunning"
 shortDescription="Scheduler is already running"
 description="Trying to start scheduler, but is already has been started."/>
 <ErrorCode name="SchedulerAlreadyStopped"
 shortDescription="Scheduler is already stopped"
 description="Trying to stop scheduler, but is already has been stopped."/>
 <ErrorCode name="NoProposalExecuting"
 shortDescription="No proposal is executing"
 description="Trying to retrieve an executing proposal, but no proposal is executing."/>
 <ErrorCode name="SystemInAutoMode"
 shortDescription="System is in automatic mode"
 description="Trying to execute a command in console while the system is in automatic mode."/>
 <ErrorCode name="CannotOpenDevice"
 shortDescription="Can't open device"
 description="Can't open THE device."/>
</Type>

	ACS Workshop - Interfaces

