
Introduction
Presentation
Hands-On Exercise (C++ Only)

Thread Class Definition
Client Code Using Thread Manager
Component Code Using Thread Manager

Discussion
Notes

Almost every slightly complex piece of software will eventually require the use of threads to achieve the required goals. It could be due to performance,
collaboration, polling, long execution tasks or other programming reasons. In the specific case of components, every call will run in a different thread, so
the program is, by design using threads, however, there are still reasons to create new threads, for instance to schedule and execute tasks at specific
times.

In principle, for clients and components, the developer is free to use the threading mechanism they prefer. In particular, for portability, ACS provides
managed threading facilities to control C++ threads lifecycle, which could be used by clients and components. A second benefit of using managed threads
in containers, is that the created threads will get destroyed along with the termination of the component or the container itself, ensuring proper release of
resources if, for any reason, they were not manually released before.

The ACS Threads were created before C++ supported threads, hence it is based in ACE/TAO's spawn function, which, for Linux (and other OSs), is based
on pthread. Considering that C++ is now offering a proper threading standard it makes sense to move forward in this direction. This would also allow to
provide a leaner interface to make developers life easier.

Scope
Threading in the different programming languages
ACS Managed Threading in C++

Duration: 15 minutes
ACS Threads.pdf

Thread Class Definition

https://confluence.alma.cl/download/attachments/56726371/ACS%20Threads.pdf?version=2&modificationDate=1595886394000&api=v2

acsThreadTest.h

#ifndef _ACS_THREAD_TEST_H
#define _ACS_THREAD_TEST_H

#include "acsThread.h"

class TestACSThread : public ACS::Thread
{
 public:
 TestACSThread(const ACE_CString& name,
 const ACS::TimeInterval& responseTime=ThreadBase::defaultResponseTime,
 const ACS::TimeInterval& sleepTime=ThreadBase::defaultSleepTime, bool del=false
) : ACS::Thread(name, responseTime, sleepTime, del) {
 ACS_TRACE("TestACSThread::TestACSThread");
 loopCounter_m = 0;
 }

 TestACSThread(const ACE_CString& name, const ACS::TimeInterval& responseTime,
 const ACS::TimeInterval& sleepTime, bool del, const long _thrFlags
) : ACS::Thread(name, responseTime, sleepTime, del, _thrFlags) {
 ACS_TRACE("TestACSThread::TestACSThread");
 loopCounter_m = 0;
 }

 ~TestACSThread() {
 ACS_TRACE("TestACSThread::~TestACSThread");
 terminate();
 }

 virtual void runLoop() {
 if (loopCounter_m==100) {
 exit();
 }
 ACS_LOG(LM_SOURCE_INFO, "TestACSThread::runLoop", (LM_INFO, "%s: runLoop (%d)", getName().c_str(),
loopCounter_m));
 ++loopCounter_m;
 }

 protected:
 int loopCounter_m;
};

#endif /* end _ACS_THREAD_TEST_H */

Client Code Using Thread Manager

<clientFile>.cpp

#include "acsThreadManager.h"
#include "acsThreadTest.h"

int main(int argc, char *argv[]) {
 LoggingProxy logger_m(0, 0, 31);
 LoggingProxy::init(&logger_m);
 ACS_CHECK_LOGGER;

 //Obtain Thread Manager
 ACS::ThreadManager tm(getNamedLogger("ThrMgrLogger"));

 //Create thread
 TestACSThread* test = tm.create<TestACSThread>("TestThread");

 //Resume execution
 test.resume();

 //Wait reasonable time...
 sleep(10);

 //Release Thread Resources
 tm.destroy(test);

 return 0;
}

Component Code Using Thread Manager

<idl>.idl

#ifndef _<idl>_IDL_
#define _<idl>_IDL_

#include <acscomponent.idl>

module <module> {
 interface <interface> : ACS::ACSComponent {
 void resume();
 void pause();
 };
};
#endif

<classFile>.h

#ifndef _<classFile>_H
#define _<classFile>_H

#include <acscomponentImpl.h>
#include <<idl>S.h>

#include "acsThreadTest.h"

class <class> : public virtual acscomponent::ACSComponentImpl, public virtual POA_<module>::<interface>
{
 public:
 <class>(const ACE_CString& name, maci::ContainerServices* containerServices);
 virtual ~<class>();
 void execute();
 void resume();
 void pause();
 void cleanUp
 protected:
 TestACSThread* test = NULL;
};
#endif

<classFile>.cpp

//Component code...
#include <<classFile>.h>

<class>::<class>(const ACE_CString& name, maci::ContainerServices* containerServices) : ACSComponentImpl(name,
containerServices) {
 ACS_TRACE("<class>::<class>");
}

<class>::~<class>() {
 ACS_TRACE("<class>::~<class>");
}

void <class>::execute() {
 test = getContainerServices()->getThreadManager()->create<TestACSThread>("ThreadTest");
}

void <class>::resume() {
 test.resume();
}

void <class>::pause() {
 test.suspend();
}

void <class>::cleanUp() {
 getContainerServices()->getThreadManager()->destroy(test);
}

/* --------------- [MACI DLL support functions] -----------------*/
#include <maciACSComponentDefines.h>
MACI_DLL_SUPPORT_FUNCTIONS(<class>)
/* --*/

Dependency with ACE/TAO spawn / pthread
Upgrading C++ Threading Technology (std::thread)
Managed Threading for other languages

Initial motivations to implement ACS Threads in C++
Portability, abstraction for complex interfaces, configuration capabilities

While them may no longer be concerns:
 Portability: std::thread, boost::thread

 Abstraction for complex interfaces: std::thread, boost::thread
 Configuration capabilities: boost::thread

There was one concern that is still valid and that ACS Threads take care of naturally:
Setting up the logger for each created thread

There was an advantage that the current implementation has:
Thread Manager resources deallocation on component / container exit

One alternative would be to design a registration for lifecycle management
In C++ it should configure the loggers for the thread
This could also be desirable for other language implementations

	ACS Workshop - ACS Threads

