® Introduction
® Presentation
® Hands-On Exercise (C++ Only)
© Thread Class Definition
© Client Code Using Thread Manager
© Component Code Using Thread Manager
® Discussion
* Notes

Almost every slightly complex piece of software will eventually require the use of threads to achieve the required goals. It could be due to performance,
collaboration, polling, long execution tasks or other programming reasons. In the specific case of components, every call will run in a different thread, so
the program is, by design using threads, however, there are still reasons to create new threads, for instance to schedule and execute tasks at specific
times.

In principle, for clients and components, the developer is free to use the threading mechanism they prefer. In particular, for portability, ACS provides
managed threading facilities to control C++ threads lifecycle, which could be used by clients and components. A second benefit of using managed threads
in containers, is that the created threads will get destroyed along with the termination of the component or the container itself, ensuring proper release of
resources if, for any reason, they were not manually released before.

The ACS Threads were created before C++ supported threads, hence it is based in ACE/TAQ's spawn function, which, for Linux (and other OSs), is based
on pthread. Considering that C++ is now offering a proper threading standard it makes sense to move forward in this direction. This would also allow to
provide a leaner interface to make developers life easier.

® Scope
© Threading in the different programming languages
© ACS Managed Threading in C++

® Duration: 15 minutes

® ACS Threads.pdf

Thread Class Definition

https://confluence.alma.cl/download/attachments/56726371/ACS%20Threads.pdf?version=2&modificationDate=1595886394000&api=v2

acsThreadTest.h

#i fndef _ACS THREAD TEST H
#define _ACS THREAD TEST H

#i ncl ude "acsThread. h"

cl ass Test ACSThread : public ACS:: Thread
{
public:
Test ACSThr ead(const ACE_CString& nane,
const ACS:: Tinmelnterval & responseTi ne=Thr eadBase: : def aul t ResponseTi ne,
const ACS::Tinmel nterval & sl eepTi ne=Thr eadBase: : def aul t Sl eepTi me, bool del =fal se
) : ACS::Thread(nanme, responseTine, sleepTinme, del) {
ACS_TRACE(" Test ACSThr ead: : Test ACSThr ead") ;
| oopCounter_m = 0;

}

Test ACSThr ead(const ACE_CString& nane, const ACS::Tinelnterval & responseTi ne,
const ACS:: Tinmelnterval & sl eepTi ne, bool del, const |long _thrFlags
) : ACS::Thread(nane, responseTine, sleepTine, del, _thrFlags) {
ACS_TRACE(" Test ACSThr ead: : Test ACSThread") ;
| oopCount er_m = 0;

}

~Test ACSThread() {
ACS_TRACE(" Test ACSThr ead: : ~Test ACSThr ead") ;
termnate();

}

virtual void runLoop() {
if (1oopCounter_m=100) {
exit();
}

ACS_LOG(LM SOURCE_| NFO, "Test ACSThread: : runLoop”, (LM.INFO "%: runLoop (%)", getNane()

| oopCounter_nj);
++| oopCount er _m

}

pr ot ect ed:
int |1 oopCounter_m

}s

#endi f /* end _ACS_THREAD TEST H */

Client Code Using Thread Manager

.c_str(),

<clientFile>.cpp

#i ncl ude "acsThreadManager. h"
#i ncl ude "acsThreadTest. h"

int main(int argc, char *argv[]) {
Loggi ngProxy | ogger_n{0, 0, 31);
Loggi ngProxy: :init(& ogger_m;
ACS_CHECK_LOGCGER;

/| otai n Thread Manager
ACS: : Thr eadManager t nm(get NanedLogger (" Thr Myr Logger ")) ;

/] Create thread
Test ACSThread* test = tm creat e<Test ACSThread>("Test Thread");

/] Resunme execution
test.resume();

//Wait reasonable tine...
sl eep(10);

/| Rel ease Thread Resources
tmdestroy(test);

return O;

Component Code Using Thread Manager

<idl>.idl

#i fndef _<idl>_IDL_
#define _<idl>_IDL_

#i ncl ude <acsconponent.idl >

nodul e <nmodul e> {
interface <interface> : ACS:: ACSConponent {
void resume();
voi d pause();
I
b
#endi f

<classFile>.h

#i fndef _<classFile>_H
#define _<classFile>_H

#i ncl ude <acsconponent | npl . h>
#i ncl ude <<idl>S. h>

#i ncl ude "acsThreadTest. h"

class <class> : public virtual acsconponent::ACSConponent|npl, public virtual

{
public:

<cl ass>(const ACE_CString& nane, maci:: Contai ner Servi ces* contai ner Services);

virtual ~<class>();

voi d execute();

void resume();

voi d pause();

voi d cl eanUp

pr ot ect ed:

Test ACSThread* test = NULL;
I
#endi f

<classFile>.cpp

/] Conponent code. ..
#i ncl ude <<cl assFil e>. h>

<cl ass>:: <cl ass>(const ACE_CString& name, naci:: ContainerServi ces* contai nerServices)

cont ai ner Servi ces) {
ACS_TRACE("<cl ass>:: <cl ass>");
}

<cl ass>::~<class>() {
ACS_TRACE(" <cl ass>:: ~<cl ass>");
}

voi d <cl ass>::execute() {

POA <nodul e>: : <interface>

ACSConponent | npl (nane,

test = get Cont ai ner Servi ces() - >get Thr eadManager () - >cr eat e<Test ACSThr ead>(" Thr eadTest ") ;

}

voi d <class>::resunme() {
test.resume();

}

voi d <cl ass>:: pause() {
test. suspend();

}

voi d <class>::cleanUp() {
get Cont ai ner Servi ces() - >get Thr eadManager () - >destroy(test);

[* e [MACI DLL support functions] ----------------- */
#i ncl ude <maci ACSConponent Defi nes. h>

MAC!I _DLL_SUPPORT_FUNCTI ONS(<cl ass>)

/* __ */

® Dependency with ACE/TAO spawn / pthread
® Upgrading C++ Threading Technology (std::thread)
® Managed Threading for other languages

® [nitial motivations to implement ACS Threads in C++

O Portability, abstraction for complex interfaces, configuration capabilities
® While them may no longer be concerns:

o 0 Portability: std::thread, boost::thread

o o Abstraction for complex interfaces: std::thread, boost::thread
o @ Configuration capabilities: boost::thread
® There was one concern that is still valid and that ACS Threads take care of naturally:
O Setting up the logger for each created thread
® There was an advantage that the current implementation has:
© Thread Manager resources deallocation on component / container exit
® One alternative would be to design a registration for lifecycle management
O In C++ it should configure the loggers for the thread
© This could also be desirable for other language implementations

	ACS Workshop - ACS Threads

