
Console
Methods
Dummy Components

Database
Methods
Dummy Components

Scheduler
Methods
Dummy Components

Telescope
Methods
Dummy Components

Instrument:
Methods
Dummy Components

This is the system entry point for the Operators
It allows the Operator to start/stop the Scheduler's automatic mode, and provides them manual access to the low level components
It should provide a component that implements all methods, and a TUI client to access those methods.

Methods

Generic Methods

void setMode(in boolean mode): Interacts with the component in the following way:Scheduler

If internal mode is changed from to nothing happensManual Manual
If internal mode is changed from to , method in gets calledManual Automatic start Scheduler
If internal mode is changed from to , method in gets calledAutomatic Manual stop Scheduler
If internal mode is changed from to , exception is raisedAutomatic Automatic SYSTEMErr::AlreadyInAutomaticEx

boolean getMode():
Returns the current value of the internal mode (Either or)Manual Automatic

Initial value for internal mode should be Manual
Instrument Interaction

void cameraOn(): Method on component gets calledcameraOn Instrument
void cameraOff(): Method on component gets calledcameraOff Instrument
TYPES::ImageType getCameraImage(): Method on component gets called, returning the imagetakeImage Instrument
void setRGB(in TYPES::RGB rgbConfig): Method on component gets called, passing arguments alongsetRGB Instrument
void setPixelBias(in long bias): Method on component gets called, passing arguments alongsetPixelBias Instrument
void setResetLevel(in long resetLevel): Method on component gets called, passing arguments alongsetResetLevel Instrument

Telescope Interaction
void moveTelescope(in TYPES::Position coordinates): Method on component gets called, passing along moveTelescope Telescope
the telescope coordinates
TYPES::Position getTelescopePosition(): Method on component gets called, returning the current getTelescopePosition Telescope
telescope position

Dummy Components

For development testing, you require the following simulated components:
Scheduler
Instrument
Telescope

This is the system entry point for the Astronomers
Besides allowing an astronomer to:

Store a target list
Query for the status
Retrieve the proposal observations
It provides methods to get the proposals currently inserted into the Database
To set a status to a given proposal
To insert a given observation into the Database

A consists of:Proposal
TargetList (which is a list of one or more)Target
Identifier and a status (0 - queued, 1 - running, 2 - ready)
A unique identifier is assigned by the database component and returned to the client after storing its TargetList

A consists of:Target
Position specification
Exposure time
Target identifier assigned by the astronomer

The target identifiers should be unique per proposal
A is simply the telescope position to be reached for that observationPosition

Methods

long storeProposal (in TYPES::TargetList targets):
Stores the given in some kind of database (Memory, SQLite, Redis, etc.), along with the and the TYPES::TargetList proposal status pr
oposal ID

Proposals are initiated with with valueproposal status STATUS_INITIAL_PROPOSAL
It returns a unique for the proposalporposal ID
The has to be uniqueproposal ID

long getProposalStatus(in long pid):
Returns the for the given proposal status proposal ID
In case the is not recognized, it returns proposal ID STATUS_NO_SUCH_PROPOSAL

void removeProposal(in long pid):
Removes the proposal associated with given proposal ID
If the is not present, then do not execute any operation and don't report any problemproposal ID

TYPES::ImageList getProposalObservations(in long pid):
Retuns all images associated to a given proposal ID
Throw exception if has not been executed yet SYSTEMErr::ProposalNotYetReadyEx proposal ID

ProposalList getProposals():
Returns stored proposals which have not been executed yet

Proposals with queued status
If there are no pending proposals returns an empty list

void setProposalStatus(in long pid, in long status):
Set the proposal status
Raises if the change is not from queued(0) to running(1) or from running(1) to readySYSTEMErr::InvalidProposalStatusTransitionEx
(2)

void storeImage(in long pid, in long tid, in TYPES::ImageType image):

Stores an image for a given and proposal ID target ID
Raises if an image has already been stored for the given and combinationSYSTEMErr::ImageAlreadyStoredEx target ID proposal ID

Dummy Components

No other components are needed to test Database Component

The Scheduler is responsible to:
Select a proposal from the Database
Execute a proposal
Store the observations
Manage the proposal's lifecycle

The observations are scheduled automatically according to some scheduling algorithm as soon as the scheduler is requested to start
On stop it will complete the executing proposal before suspending the automatic mode

Methods

void start():
Starts the Scheduler
The will loop through all available , either until all are done or until the method is calledScheduler proposals proposals stop
If the is already running, then throws Scheduler SYSTEMErr::SchedulerAlreadyRunningEx

void stop():
Stops the Scheduler
This will stop the from scheduling more Scheduler proposals
It will break the ongoing , and will return only when the running has finishednot(!) observation observation
If the Scheduler is not running, then throw SYSTEMErr::SchedulerAlreadyStoppedEx

long proposalUnderExecution():
Returns the of the proposal currently under executionproposal id
Raises if no proposal is executing.SYSTEMErr::NoProposalExecutingEx

Dummy Components

For development testing, you require the following simulated components:
Database
Instrument
Telescope

This component communicates with the low level hardware access layer to:
Execute observations; i.e. moves the telescope to a given position
Acquires the image from the Instrument for a given exposure time once the telescope is in position

Methods

TYPES::ImageType observe(in TYPES::Position coordinates, in long exposureTime): Calls the internal method and then makes use of moveTo In
method passing along exposure time in milliseconds.strument takeImage

void moveTo(in TYPES::Position coordinates): Commands the to move to the commanded position by calling methTelescope TelescopeControl
od objfix
TYPES::Position getCurrentPosition(): Returns the current positionTelescope

Dummy Components

For development testing, you require the following simulated components:

Instrument
TelescopeControl

Sets the CCD camera on and off
Takes an image with a given exposure time

Methods

void cameraOn(): Method on component gets calledon Camera
void cameraOff(): Method on component gets calledoff Camera
TYPES::ImageType takeImage(in long exposureTime): Method on component gets called, passing along shutter speed value getFrame Camera
and setting a default iso value, returning the image

Default iso value is iso100
Shutter speed value depends on exposureTime value. The exposureTime parameter is passed as milliseconds. Check for the following
conditions to determine the shutter speed value:

If exposure time in seconds is less or equal to 1/5, shutter speed is s1over5.
If exposure time in seconds is less or equal to 1/4, shutter speed is s1over4.
If exposure time in seconds is less or equal to 0.3, shutter speed is s0_3.
If exposure time in seconds is less or equal to 0.4, shutter speed is s0_4.
If none of the conditions above is met, shutter speed is s1.

void setRGB(in TYPES::RGB rgbConfig): This is just a placeholder method for better implementationsCamera

Store value in local vairable
void setPixelBias(in long bias): This is just a placeholder method for better implementationsCamera

Store value in local vairable
void setResetLevel(in long resetLevel): This is just a placeholder method for better implementationsCamera

Store value in local vairable

Dummy Components

For development testing, you require the following simulated components:

Camera

	ACS Workshop - Project Details

