In a work performed in collaboration with CTA, we prepared a small prototype to mock-up the ContainerServices class in C++. This mock-up allowed to
retrieve components and make them interact, without requiring a CORBA connection and making it possible to do simple integration testings without ACS
running and taking advantage of unit testing framework.

The benefits of this comes from performance and simplicity of the testing environment.

For reference, an ACS ticket already exists for integrating this prototype into ACS:
ACS-11 - Implement mock container services for testing without ACS running | TO DO

There are several limitations, some of which could be mitigated by extending the ContainerServices mock-up functionalities. At the moment of writing:

® Only retrieving components is implemented in the prototype (Alarms, CDB, etc. are missing)
® This only works with components interacting in the same programming language

The C++ prototype extends the ContainerServices class. The important methods to consider here, are the activateComponent/deactivateComponent which
are to be used by the setUp and cleanUp methods in Unit testing.

MockContainerServices.h

cl ass MockCont ai ner Servi ces : public maci:: ContainerServices {
public:
MockCont ai ner Ser vi ces(ACE_CSt ri ng& conponent Nane, Portabl eServer:: POA ptr poa);
~MockCont ai ner Servi ces();
virtual CORBA:: Object* get CORBAConponent (const char* nane);
/l... Oher nethods omtted for sinplicity
tenpl at e<cl ass TObj ect > voi d acti vat eConponent (const char* nane) {
TObj ect* obj = new TCbj ect(nanme, this);
obj->initialize();
obj - >execute();
t hi s->conps[nane] = obj
I
virtual deactivateConponent(const char* name) {
acsconponent : : ACSConponent | npl * obj = dynam c_cast <acsconponent: : ACSConponent | npl *>(t hi s- >conps[nane] .

in());
try {
obj ->cl eanUp();
} catch (...) {
obj - >about ToAbort ();
}
t hi s->conps. erase(nane);
}
pr ot ect ed:

std:: map<std::string, CORBA::Cbject_var> conps;
b

The getCORBAComponent method was also extended in order to return the component from 'comps' std::map:

MockContainerServices.cpp

CORBA: : Cbj ect* MdockCont ai ner Ser vi ces: : get CORBAConponent (const char* nane){
if (conps.find(name) == conps.end()) {

maci Err Type: : Cannot Get Conponent ExI npl ex(__FILE__, __LINE__, "MdckContai ner Servi ces: : get Conponent");
ex. set CURL(nane) ;
t hrow ex;

}
return CORBA:: Obj ect:: _duplicate(conps[nane].in());

Later on, in the test implementation we would do something similar to:

https://jira.alma.cl/browse/ACS-11

TestExample.cpp

MockCont ai ner Servi ces* ncs = nul |l ptr;

set Up() {
nts = new MbckCont ai ner Servi ces(cn, nullptr);
nts->act i vat eConponent <Maci Test Conponent | npl >(" TEST_COWP1") ;
nts->acti vat eConponent <Maci Test Conponent | npl >(" TEST_COWP2") ;

}

cl eanUp() {
nts- >deact i vat eConponent (" TEST_COWP1") ;
nts- >deact i vat eConponent (" TEST_COWP2") ;
del ete nts;
ncs = nullptr;

}

/1 The tests should not know anythi ng about the changes we've done, but they rely on this nts instance just for
conveni ence
test_exanple() {
MACI _TEST: : Maci Test Conponent _var conp = nts->get Conponent <MACI _TEST: : Maci Test Conponent >(" TEST_COWP1") ;
conp->sone_nethod(...); //If sone_method retrieves a conponent, it should also work normally, since on
creation, we passed an instance of MyckCont ai ner Services

}

Assume MaciTestComponent is an interface definition in an IDL file extending from ACS Component interface and that MaciTestComponentlmpl is the
actual implementation in C++.

This line of work opens a couple of opportunities to improve the testing of ACS and the projects that run on top of it, simplifying and accelerating some test
case scenarios by avoiding the complexities required for distributed systems. It also allows some level of integration testing, without requiring real
deployments. That said, this is just a minimal example, which could be improved in several ways:

® [ntegrate these prototypes into ACS

® Extend the idea to Java and Python

® Support other types of component instantiation (non-sticky, dynamic, etc.) for completion
® Support dummy CDBs, Alarms and other functionalities offered by the container service

	Local Container Services for Testing

