* MODROOT

© MODROOT_WS

© MODROOT_LCU

© MODROOT_WS_LCU

© Files and Directory Description
® ACSROOT
® ACSDATA

© Files and Directory Description
® INTROOT/INTLIST

© INTROOT

O INTLIST

The ACS directory structure is very straightforward, but it may not be very intuitive to newcomers. There are a couple of concepts that we need to consider:

MODROOT_WS and MODROOT_LCU, MODROOT_WS_LCU
ACSROOT

ACSDATA

INTROOT and INTLIST

All three variants of MODROOT represent a very similar scenario. They create a module directory, either for WorkStation (MODROOT_WS), for Local
Control Unit (LCU) (MODROOT_LCU) or for both (MODROOT_WS_LCU). Executing each bears a similar structure:

MODROOT_WS

get Tenpl at eFor Di rect ory MODROOT_WS wshMbdul e

acs al mangr: ~ 30449 > tree wshbdul e/
ws Modul e/
bi n
Changelog
config
CDB
schenas
doc
idl
i ncl ude
lib
ACSconponent s
endor sed
pyt hon
si t e- packages
LOGS
man
manl
man2
man3
man4
man5
man6
man7
man8
manl
mann
obj ect
rta
src
Makefil e
t est

MODROOT_LCU

get Tenpl at eFor Di rect ory MODROOT_WS | cuMbdul e



acs al mangr: ~ 30451 > tree | cuMdul e
| cuModul e
bi n
Changelog
doc
idl
i ncl ude
lib
ACScomponent s
endor sed
pyt hon
si t e- packages
LOGS
man
manl
man2
man3
man4
man5
man6
man7
man8
manl
mann
obj ect
src
Makefil e
t est

MODROOT WS_LCU

get Tenpl at eFor Di rect ory MODROOT_W5_LCU nodul e



acs al mangr: ~ 30459 > tree nodul e
nmodul e/
Changelog
I cu
bi n
doc
idl
i ncl ude
lib
ACSconponent s
endor sed
pyt hon
si t e- packages
LOGS
man
manl
man2
man3
man4
man5
man6
man7
mang
manl
mann
obj ect
src
Makefile
test

bi n
config
CDB
schenas
doc
idl
i ncl ude
lib
ACSconmponent s
endor sed
pyt hon
si t e- packages
LOGS
man
manl
man2
man3
man4
man5
man6
man7
man8
manl
mann
obj ect
src
Makefil e
t est

Files and Directory Description

As we can see, there are several files and directories created under each of the scenarios:

® bin: Here we place the scripts and binaries that get executed. This could be added to PATH environment variable
® Changelog: A file that could be used to register changes of the module. We make use of JIRA and "git log" for this, but this could be used as an
additional place for this information.



® config: Directory for configurations.
© config/CDB: Directory for module's CDB configurations. Could be used with ACS_CDB environment variable to configure a CDB for
testing the module
= config/CDB/schemas: The XML Schema (XSD) files are placed in this directory
doc: Directory to place documentation
idl: Directory for IDL (.idl, .midl) files, XML error definitions, XML Schema binding file, etc.
include: Directory for C++ headers, inline and template files
lib: Directory for C++ libraries and Java JAR files. Could be used in LD_LIBRARY_PATH (C++ libraries) and in CLASSPATH (Jar files) to make
use of the module's libraries and jar files
© lib/ACSComponents: Directory for Java JAR files associated with components
o lib/endorsed: Directory for endorsed JAR files (No longer relevant since Java 11 disabled the use of endorsed JARS)
© lib/python: Directory for Python code
" |ib/python/site-packages: Python site-packages are placed here. Could be used with PYTHONPATH environment variable to
make use of the Python code and cached code (.pyc)
® LOGS: Directory where logs can be placed
® man: Man documentation in Unix/Linux style could be placed here. See more at https://linux.die.net/man/ page.
© man/man<n>: Look at the link above
© man/manl: Look at the link above
© man/mann: Look at the link above
® object: Directory for temporary files such as C++ compiled objects, code-generated source files, etc.
® rtai: Directory for Real Time Application Interface (RTAI) and other compiled kernel modules to be installed
® src: Directory for source files
© src/Makefile: The main file to define the targets to be compiled, installed and deployed by the moduled
® test: Directory that contains all the necessary files for testing. Source code, Makefile, TAT configuration files, reference files, etc.

The ACSROOT directory is considered an "installation area". When you compile a module and call "make install", ACSROOT is the default destination
area for ACS modules' installation.

acs al mangr: ~ 31443 > get Tenpl at eFor Di rect ory ACSROOT acs. r oot


https://linux.die.net/man/

acs al mangr: ~ 31445 > tree acs.root/
acs. root/
ALARVS
HELP
app-defaul ts
bi n
bi t maps
CDT
config
CDB
schenas
ERRORS
HELP
idl
i ncl ude
lib
ACScomponent s
endor sed
pyt hon
si t e- packages
LOGS
man
manl
man2
man3
man4
man5
man6
man7
man8
manl
mann
rta
sounds
tenpl ates
VW
bi n
MC68000
MC68040
PPC604
aT
idl
i ncl ude
lib
ACSconponent s
endor sed
MC68000
MC68040
PPC604
pyt hon
si t e- packages

manl
man2
man3
man4
man5
man6
man7
man8
manl

mann

60 directories, O files
The directory structure is very similar to MODROOT, bin, config, idl, include, lib, LOGS, man and rtai are equivalent for the MODROOT definitions,

although only the targets selected for installation are finally placed there. Changelog, src, doc, object and test are not found in the installation areas. Other
directories are as follows:



ALARMS and ALARMS/HELP: Alarm definition documentation (Not used)

app-defaults: Not used.

bitmaps: Not used.

CDT: Not used.

ERRORS and ERRORS/HELP: Error definition documentation (Not used)

sounds: Not used

templates: Templates, such as the ones used for getTemplateForDirectory command are placed here
vw: VxWorks. Not used in most projects. Used at APEX observatory.

ACSDATA is a place associated with runtime configurations and output of data.

get Tenpl at eFor Di rect ory ACSDATA acs. data

acs al mangr: ~ 30451 > tree acs.data
acs. data

config

dunps

ENVI RONVENTS

| ogs

tnp

5 directories, 0 files

Files and Directory Description

config: Configuration files, including CDB, schemas and other files
dumps: Core dumps, heap dumps, etc. can be placed in this directory
ENVIRONMENTS: Not used

logs: Runtime logs can be placed in this directory

tmp: Runtime temporary data is placed here

INTROQT is an installation area with the same structure as ACSROQOT, but the main difference is that it allows to install code without interfering with the
ACS (or your project installation). It is very handy for development and experimental tests and also as a patching system, specially when used in
combination with INTLIST. INTLIST is just a list of INTROOTS, which have an order of prioritization which will be used to choose binaries, libraries, jars,
python code, etc. from one place or another. Everything that is in two or more INTROOTS gets hidden for the lower priority one by the one with highest
priority.

INTROOT

get Tenpl at eFor Di rectory | NTROOT i ntr oot



acs al mangr: ~ 30463 > tree introot
introot
ALARVS
HELP
app-defaul ts
bi n
bi t maps
CDT
config
CDB
schenmas
ERRORS
HELP
idl
i ncl ude
lib
ACScomponent s
endor sed
pyt hon
si t e- packages
LOGS
man
manl
man2
man3
man4
man5
man6
man7
man8
manl
mann
responsi bl e
rta
sounds
Sour ces
tenpl at es
VW
bi n
MC68000
MC68040
PPC604
aT
idl
i ncl ude
lib
ACSconmponent s
endor sed
MC68000
MC68040
PPC604
pyt hon
si t e- packages

manl
man2
man3
man4
man5
man6
man7
man8
manl
mann
Sour ces

62 directories, 1 file



The same directory structure as ACSROOT is present. Here you see one more:

® Sources: Here, a copy of src/include directories get installed along with your build, allowing you to analyze exact pieces of code used to produce
the build. This directory is also installed to ACSROOT, but the getTemplateForDirectory is actually ignoring the creation of the Sources directory.

INTLIST

The INTLIST is just an environment variable used by the ACS .bash_profile.acs script to configure several INTROOTS in an order of priority.

export | NTLI ST=~/introot1:~/introot2:~/introot3:~/introot4

In the example above, it will have four INTROOTS configured in parallel, where ~/introotl has the highest priority and ~/introot4 the lowest. This means
that every binary or script offered by ~/introot1 will be used first, and things from ~/introot4 will only be used if they're not shadowed by a different version
provided in the other 3 INTROOTSs.



	ACS Directory Structure

